Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Biogeochemical reactions occurring in soil pore space underpin gaseous emissions measured at macroscopic scales but are difficult to quantify due to their complexity and heterogeneity. We develop a volumetric-average method to calculate aerobic respiration rates analytically from soil with microscopic soil structure represented explicitly. Soil water content in the model is the result of the volumetric-average of the microscopic processes, and it is nonlinearly coupled with temperature and other factors. Since many biogeochemical reactions are driven by oxygen (O 2 ) which must overcome various resistances before reaching reactive microsites from the atmosphere, the volumetric-average results in negative feedback between temperature and soil respiration, with the magnitude of the feedback increasing with soil water content and substrate quality. Comparisons with various experiments show the model reproduces the variation of carbon dioxide emission from soils under different water content and temperature gradients, indicating that it captures the key microscopic processes underpinning soil respiration. We show that alongside thermal microbial adaptation, substrate heterogeneity and microbial turnover and carbon use efficiency, O 2 dissolution and diffusion in water associated with soil pore space is another key explanation for the attenuated temperature response of soil respiration and should be considered in developing soil organic carbon models.more » « less
-
Ecological corridors are one of the best, and possibly only viable, management tools to maintain biodiversity at large scales and to allow species, and ecological processes, to track climate change. This document has been assembled as a summary of the best available information about managing these systems. Our aim with this paper is to provide managers with a convenient guidance document and tool to assist in applying scientific management principles to management of corridors. We do not cover issues related to corridor design or political buy in, but focus on how a corridor should be managed once it has been established. The first part of our paper outlines the history and value of ecological corridors. We next describe our methodologies for developing this guidance document. We then summarize the information about the impacts of linear features on corridors and strategies for dealing with them—specifically, we focus on the effects of roads, canals, security fences, and transmission lines. Following the description of effects, we provide a summary of the best practices for managing the impacts of linear barriers. Globally, many corridors are established in the flood plains of stream and rivers and occur in riparian areas associated with surface waters. Therefore, we next provide guidance on how to manage corridors that occur in riparian areas. We then segue into corridors and the urban/suburban environment, and summarize strategies for dealing with urban development within corridors. The final major anthropic land use that may affect corridor management is cultivation and grazing agriculture. We end this review by identifying gaps in knowledge pertaining to how best to manage corridors.more » « less
An official website of the United States government
